

Cardiac Imaging Data Analysis

The functions of BV Workbench corresponding to the data processing function and analysis function described in the following papers are described.

Laughner JI, Ng FS, Sulkin MS, Arthur MA, Efimov IR.

Processing and Analysis of Cardiac Optical Mapping Data Obtained with Potentiometric Dyes. Am J Physiol Heart Circ Physiol. 2012 Oct 1;303(7):H753-65.

1. Pre-processing of data

- 0. Undo filters
- 1. Invert polarity
- 2. Data Masking
- 3. Spatial filter (mean filter)
- 4. FIR filter
- 5. Drift removal
- 6. Normalization

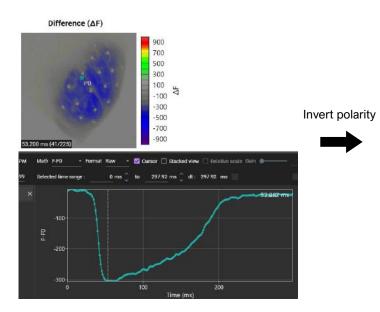
2. Data anlaysis

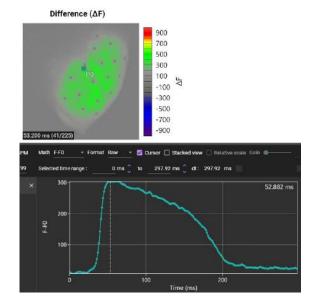
- 1. Activation time map / APD (action potential duration) map / Repolarization time map
- 2. Conduction velocity map
- 3. Phase map
- 4. Dominant frequency map
- 5. Conduction velocity on straight line
- 6. Save image

Brainfision

1-0. Undo filter

You can undo the last processed filter and undo data by clicking the Undo icon on the toolbar.


Number of undos that can be undone is set in [Undo levels] on the [App settings] screen. You can set 1 to 10, but the larger the number, the larger the memory usage of the PC. The recommended value is 1.


File	Tools	Help	
- (a 🗠	\$	
App setti	ngs 🛛		
Gene	ral		
Undo	levels 1		
🗆 sh	iow advance	d settings	
Proce	essina		

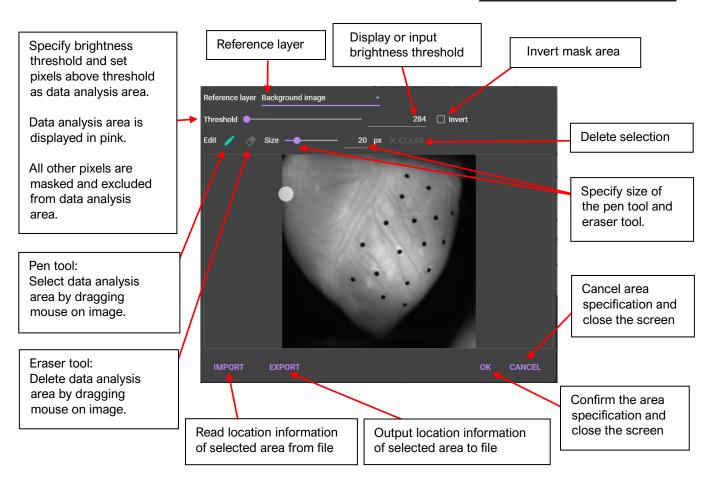
1-1. Invert polarity

When [Filters (spatial)]-[Invert polarity] is executed, polarity of change of F-F(0) is inverted while maintaining brightness value of background image.

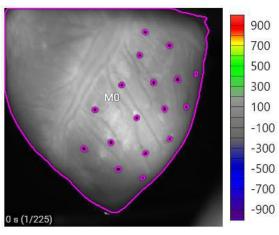
Filters (spatial)	Filters (temporal)	Other
=,	Filter b	atch	
	Invert p	olarity	

Analyze Filters (spatial) Filters (temporal)

Add mask...


1-2. Data masking

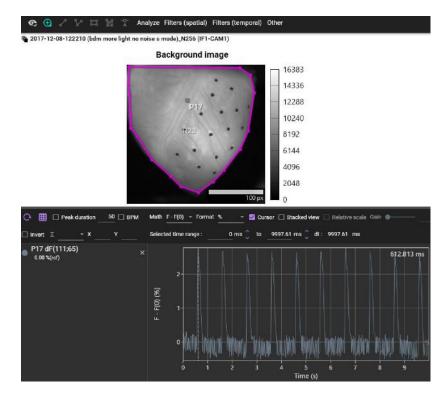
There are two methods, "add mask" and "ROI (polygon)".


1-2-1. Specifying data analysis area by adding a mask layer (add mask)

To specify data analysis area, you can use a ROI (rectangle or polygon) or add a mask layer. Specify data analysis area on the mask layer.

Select [Analyze]-[Add mask..] to display the following screen.

Difference (ΔF)

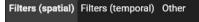

Range specification by mask layer

1-2-2. Specifying data analysis area by ROI (polygon)

With "Add polygon" selected, click on image and specify polygon. A polygon is completed when start point and end point are specified to be the same.

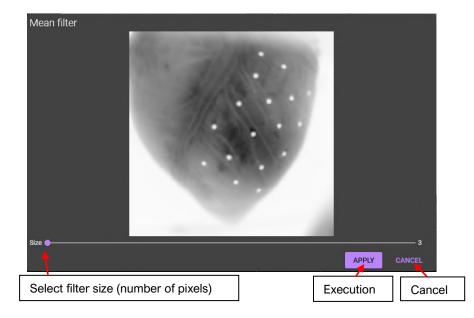
The specified polygon becomes ROI (Region of Interest) and is used for target range of various data analysis and display range of pseudo color.

Operation	Description		
Click on image with ช	Create polygon		
Right click while creating a polygon	End shape	Finish specifying points and confirm polygons	
	Abort	Delete created polygon	
Mouse drag points after creating polygon	Move position of point and change polygon		
Right click on polygon	Area info Area information display		


1-3. Spatial filter (mean filter)

When [Filters (spatial)]-[Mean filter] is executed, the following screen is displayed. Mean filter smooths image and removes noise. Let pixel value be D(t,x,y), and if it is indicated by \bullet , set average value of data values in the proximity of the PxP range to D(t,x,y).

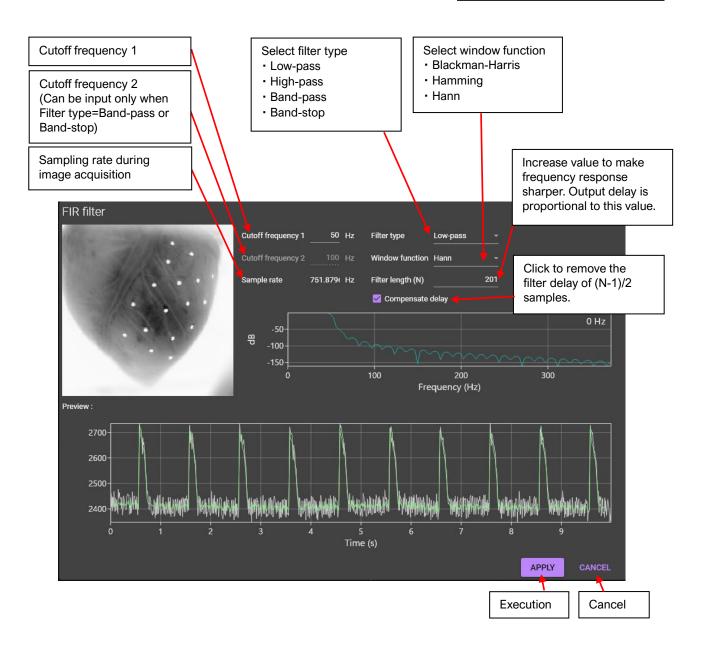
When P=3


When P=5						

- Filter batch...
- Invert polarity
 - Binning...
- Brightness/Illumination correction...

Gaussian filter...

Mean filter...



1-4. FIR filter

Click [Filters (temporal)]-[Finite impulse response (FIR) filter...] to display the following screen, which uses a FIR (finite impulse response) filter to remove noise.

If you click on an image, original waveform at that point will be gray, and FIR filtered waveform will be green.

- Filters (temporal) Other
 - =/ Filter batch...
 - Deinterleave frames...
 - ∠ Drift removal...
 - Finite impulse response (FIR) filter...

1-5. Drift removal

When you click [Filters (temporal)]-[Drift removal], the following screen is displayed and rise/fall (drift) of waveform baseline due to fading of fluorescent dye and change in brightness of light source is corrected.

When you click on an image, original waveform at that point is displayed in gray and waveform after drift removal processing is displayed in green.

 Filters (temporal)
 Other

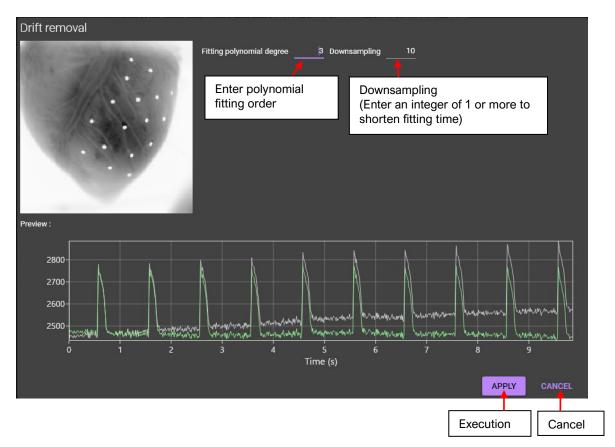

 >
 Filter batch...

 Image: Deinterleave frames...

 Image: Drift removal...

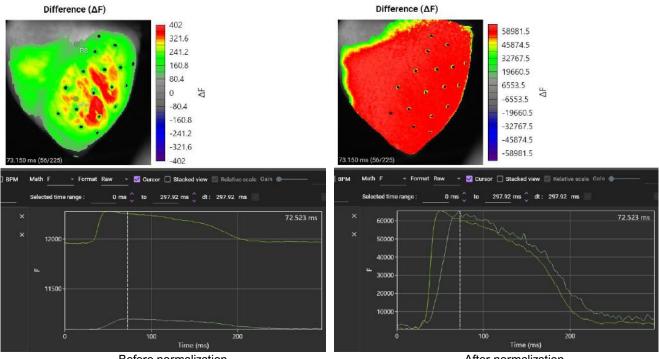
Enter integers for [Fitting polynomial degree] and [Downsampling]. Keep in mind that the larger the [Fitting polynomial degree] value, the smaller the signal change, so choose a value that is neither too small nor too large.

Enter optimum values to remove unnatural undulations of waveform and click [APPLY] to start drift removal process. The process may take some time. To cancel drift removal process, click [CANCEL].

1-6. Normalization

Correct difference in amplitude of brightness value between each pixel and calculate so that brightness values of all pixels have the same amplitude (0 to 65,535).

Even with a uniform tissue sample such as an isolated heart, fluorescence intensity may vary depending on location due to factors such as uneven irradiation of excitation light, uneven staining, and tissue thickness. In such cases, using Normalize eliminates influence of external factors that cause differences in amplitude, and makes the signal intensities (waveforms) of all pixels the same as when recording with electrodes.

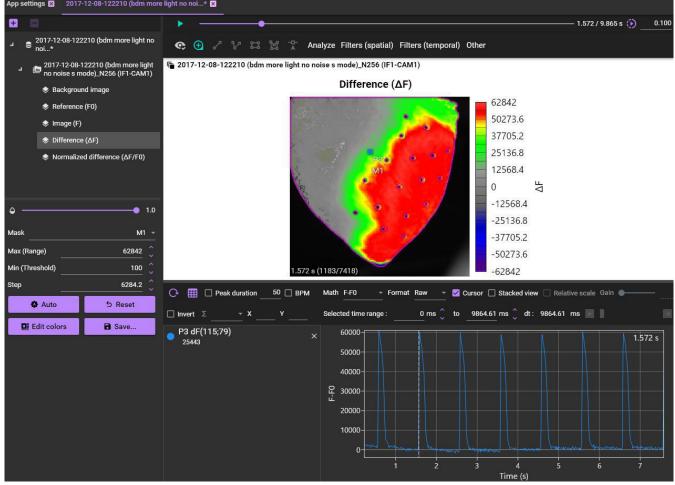

Filters	(temporal) Other
=,	Filter batch
Ē	Deinterleave frames
k	Drift removal
	Finite impulse response (FIR) filter
Dynamic range optimization (DRO)	
	Normalize wave amplitude

Correlation of signal intensity between pixels is lost, so it is not suitable for samples such as neuro samples where the signal intensity differs depending on the site.

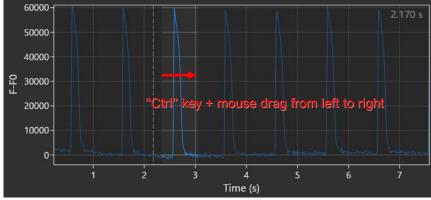
Click [Filters (temporal)]-[Normalize] to execute.

The algorithm is as follows.

- 1. For each pixel, check all frames to find the maximum and minimum values.
- 2. Calculate gain and offset so that the minimum value is 0 and the maximum value is 65535.
- 3. Apply gain of 2 and offset to all frames


Before normalization

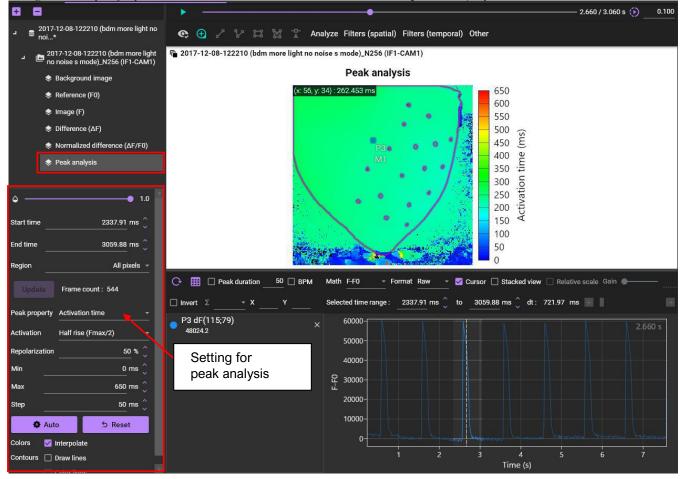
After normalization



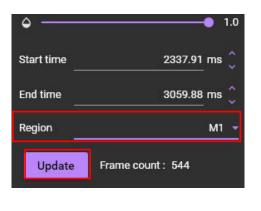
2-1. Activation time map / APD (action potential duration) map / Repolarization time map /

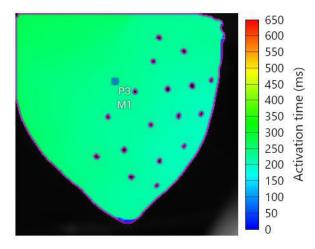
After completing 1-1 to 1.6, It is possible to create various maps.

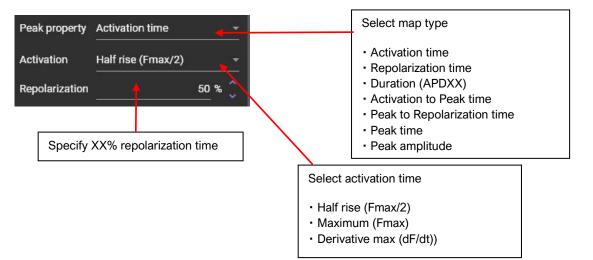
Hold down "Ctrl" key and drag mouse from left to right on waveform to select waveform range. (Hold "Ctrl" key and drag mouse pointer to left to deselect time range selection for waveform and select all ranges.)



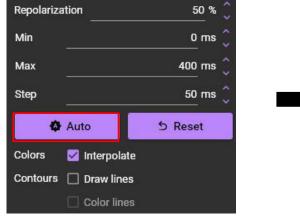
Click [Analyze]-[Add peak analysis layer].

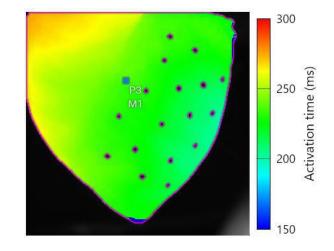

Analyze	Filters (spatial) Filters (temporal)
8	Add mask
\$	Add frequency analysis layer
\$	Add peak analysis layer
\$	Add peak analysis layers
\$	Add phase analysis layer


The [peak analysis] layer is added to the list on the left and the settings are displayed



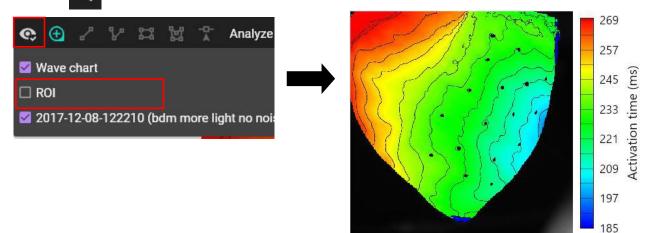
Select mask name or ROI name in [Region] and then, click [Update] button. Color is displayed only within the specified range.

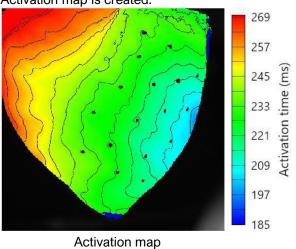




Select "Peak property (map type) ", activation time and set repolarization %.

Then, click [Auto] button to set optimal values.

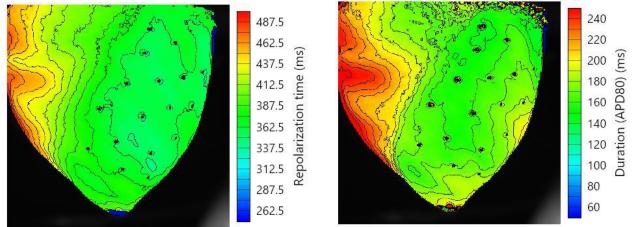



Min 185 ms 269 Max 270 ms 257 Activation time (ms) Step 6 ms 245 P3 -5 Reset 233 Auto Colors 🗹 Interpolate 221 Contours 🗹 Draw lines 209 Color lines 197 185

Change map appearance by checking [Draw lines] and adjusting [Min], [Max], [Step].

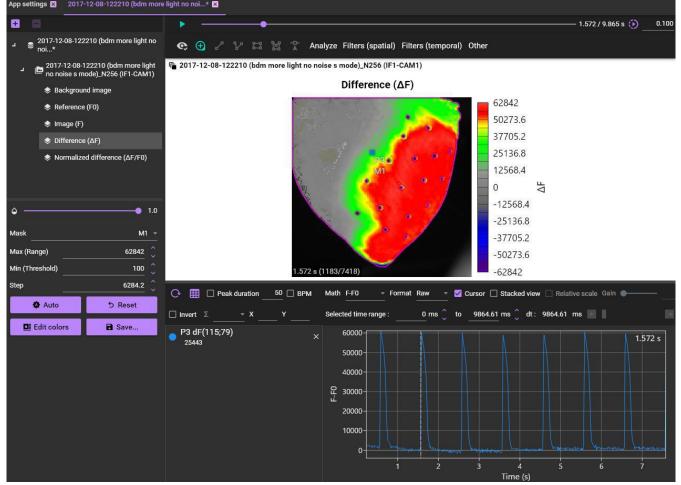
Click the

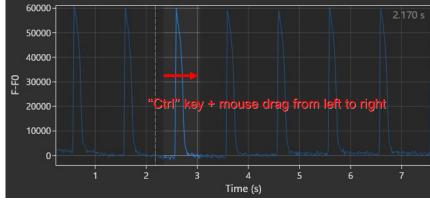
icon and turn off "ROI" to remove the border



Activation map is created.

You can create a repolarization map, ADP map and other maps in the same way

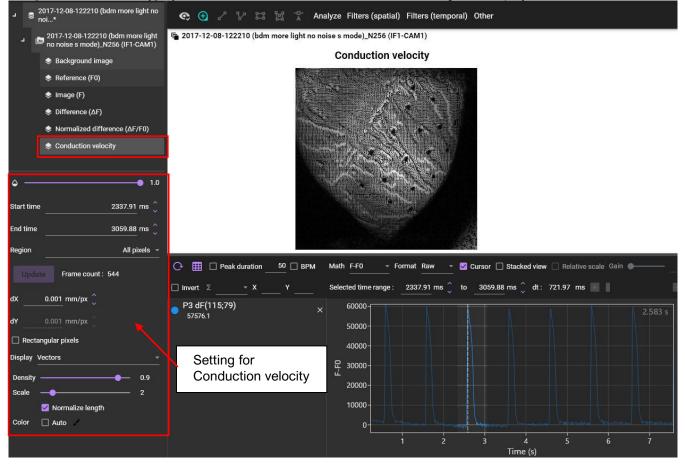

Repolarization map



2-2. Conduction velocity map

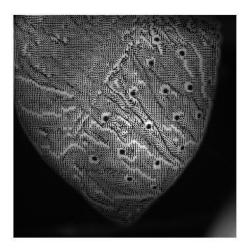
After completing 1-1 to 1.6, It is possible to create coduction velocity map.

Hold down "Ctrl" key and drag mouse from left to right on waveform to select waveform range. (Hold "Ctrl" key and drag mouse pointer to left to deselect time range selection for waveform and select all ranges.)



Click [Analyze]-[Add velocity analysis layer].

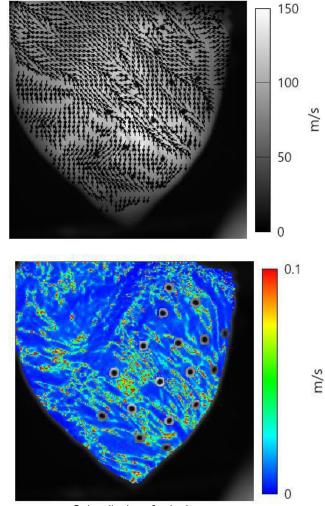
Analyze	Filters (spatial)	Filters (temporal)
8	Add mask	
\$	Add frequency a	nalysis layer
\$	Add peak analysi	is layer
\$	Add peak analysi	is layers
\$	Add phase analy	sis layer
\$	Add velocity anal	lysis layer


The [Conduction velocity] layer is added to the list on the left and the settings are displayed

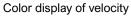
Brainfision

Select mask name or ROI name in [Region] and then, click [Update] button. Conduction velocity is displayed only within the specified range.

۰ —		•	1.0
Start time	2337.91	ms	^ >
End time	3059.88	ms	< >
Region		М1	
Update	Frame count : 544		



Specify size per pixel in mm.



Adjust the appearance by changing the density and scale.

Display with colored arrows

150

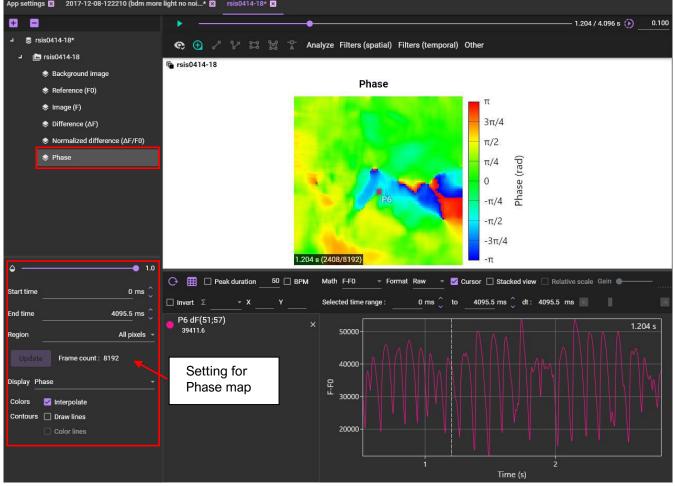
100

50

0

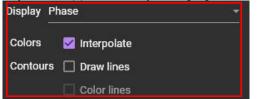
m/s

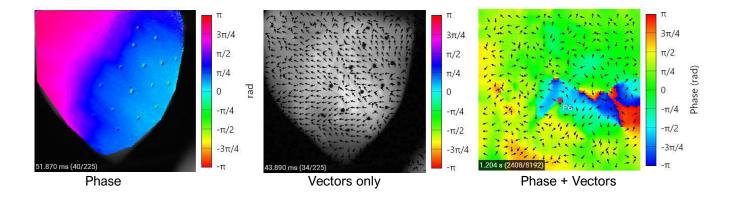
2-3. Phase map


	► 1.167 / 4.096 s ()	0.10
⊣ 🛢 rsis0414-18*	🗢 👝 🚱 🥜 🖓 🕼 🐩 Analyze Filters (spatial) Filters (temporal) Other	
J 🛅 rsis0414-18	F rsis0414-18	
😻 Background image	Difference (ΔF)	
< Reference (F0)		
< Image (F)	55002.6	
Difference (ΔF)	42779.8	
Normalized difference (ΔF/F0)	30557 18334.2	
	G111 A	
	-6111.4	
	P6 -18334.2	
	-30557	
	-42779.8	
	-55002.6	
۵ —	🗘 🏢 🗌 Peak duration 50 🗌 BPM Math F-FO 🔹 Format Raw 🔹 🌌 Cursor 🗌 Stacked view 🗌 Relative scale Gain 🌒 ———	
Mask All pixels +		
Max (Range) 61114 🗘	P6 dF(51:57)	
Min (Threshold)	39613.7 × 50000 1.16	57 s
Step 6111.4 🗘		
Auto 5 Reset		
🛄 Edit colors 🛛 🗃 Save	윤 · · · · · · · · · · · · · · · · · · ·	
	u 30000-	
	20000	
	Time (s)	

Click [Analyze]-[Add phase analysis layer].

Analyze	Filters (spatial) Filters (temporal) (
	Add mask
\$	Add frequency analysis layer
۰.	Add peak analysis layer

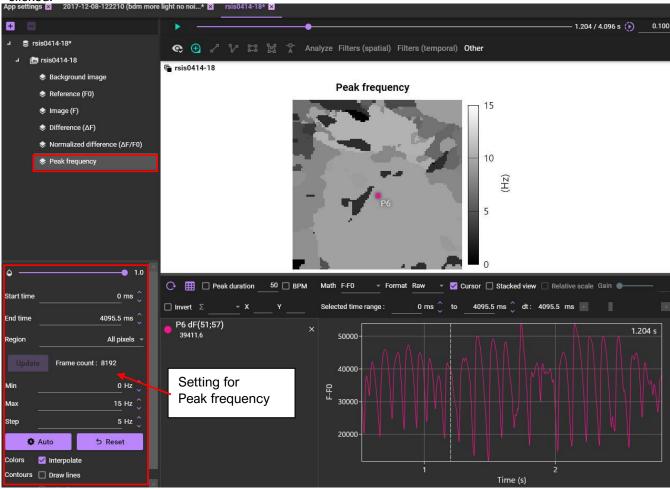

- Add peak analysis layers...
- Add phase analysis layer
- s Add velocity analysis layer



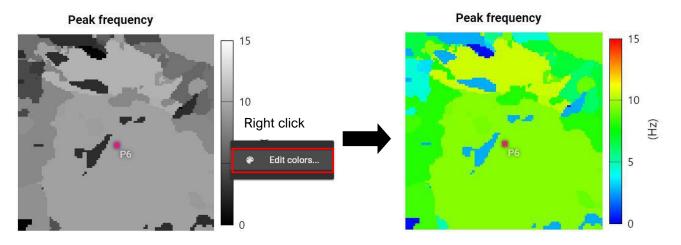
The [Phase] layer is added to the list on the left and the settings are displayed when "Phase" is clicked.

Adjust the appearance by changing the following settings.

÷ 1.167 / 4.096 s 🜔 0.100 rsis0414-18* 📀 🕣 🥜 🎲 🔛 🙀 🏋 Analyze Filters (spatial) Filters (temporal) Other 🛃 rsis0414-18 rsis0414-18 Background image Difference (ΔF) Reference (F0) 📚 Image (F) 55002.6 42779.8 Difference (ΔF) Normalized difference (ΔF/F0) 30557 18334.2 6111.4 ΔF -6111.4 -18334.2 -30557 -42779.8 -55002.6 1.168 s (2336/8192) ۵ 1.0 50 🗌 BPM 🗹 Cursor 🔲 Stacked view 🗌 Relative scale Gain 🌑 🕑 🏢 🗌 Peak duration Math F-F0 👻 Format Raw Mask All pixels 4095.5 ms 🔶 dt : 4095.5 ms 💽 \Box Invert Σ Selected time range - x Max (Range) P6 dF(51;57) Min (Threshold) 1.167 s 39613.7 50000 Step Auto 5 Reset 40000 Edit colors B Save.. 30000 20000 1 Time (s)

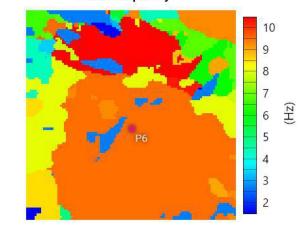

2-4. Dominant frequency map

Click [Analyze]-[Add frequency analysis layer].

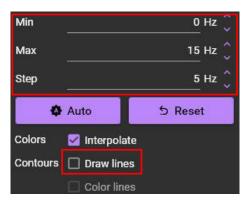

Ana	alyze	Filters (spatial)	Filters (temporal)	
		Add mask		
	\$	Add frequency a	nalysis layer	
	\$	Add peak analys	is layer	
	\$	Add peak analys	is layers	
	\$	Add phase analy	sis layer	
	¢,	Add velocity ana	lysis layer	

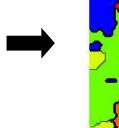
The [Peak frequency] layer is added to the list on the left and the settings are displayed, when "Peak frequency" is clicked.

Right-click on the color bar and select [Edit colors] to change the color map.

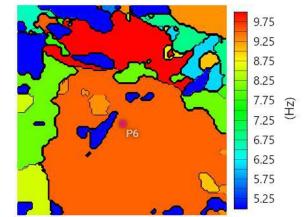

Select mask name or ROI name in [Region] and then, click [Update] button. Peak frequency map is displayed only within the specified range.

۰ —		•	1.0
Start time	2337.91	ms	
End time	3059.88	ms	
Region		М1	-
Update	Frame count : 544		

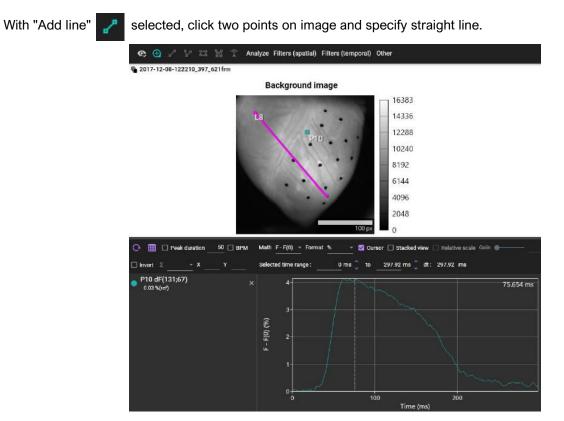

Click [Auto] button to set optimal values.



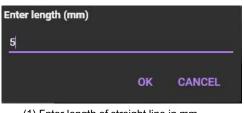
Peak frequency

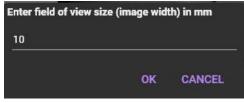


Change map appearance by checking [Draw lines] and adjusting [Min], [Max], [Step].

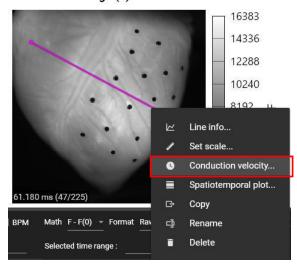


Peak frequency

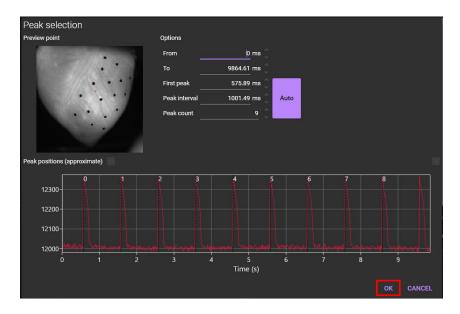

2-5. Conduction velocity on straight line


Operation	Description				
With selected Click on image	Click two points to spe	Click two points to specify straight line			
Click a specified line	Select line				
Mouse drag point	Change line position and length				
Right click on point	Line info	Line information display			
	Set scale	Specify line length in mm			
	Conduction velocity	Measure conduction velocity on line			
	Spatiotemporal plot	Display the spatiotemporal map			
	Сору	Copy line coordinates and display in another data of same data set			
	Rename	Change line name			
	Delete	Delete line			

- (a) The scale must be set in advance. There are two ways.
 - (1) Right-click on line and click [Set scale]. Enter length of straight line in mm.
 - (2) Right-click on image and click [Image scale]-[Set scale]. Enter horizontal length of image in mm

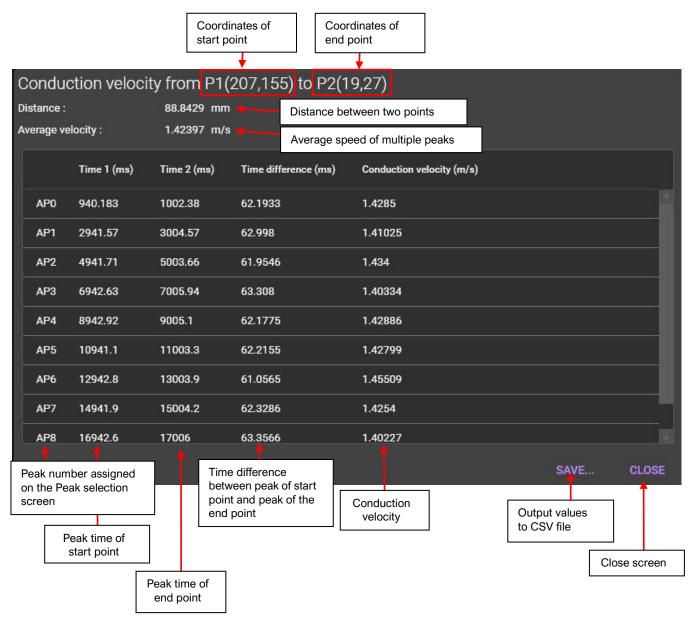


(1) Enter length of straight line in mm.



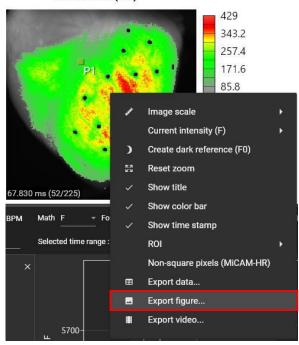
(2) Enter image width in mm.

(b) Right-click on line and click [Conduction velocity]. Image (F)



(c) The [Peak selection] screen is displayed. Peaks are automatically detected and each peak is numbered. Check the displayed settings and click the [OK] button.

(d) The conduction velocities of multiple peaks (action potentials) are calculated and displayed.


Example of CSV file

Date created	2020/07/07 15:39:57					
Source data nar	2017-12-08-122210 (bdm more light no noise s mode)_N256 (IF1-C					
Source data pat						
P1	X:207 Y:155					
P2	X:19 Y:27					
Distance (mm)	88.8429311					
Average velocity	1.423966125					
Name	Time 1 (ms)	Time 2 (ms)	Time difference (ms)	CV(m/s)		
APO	940.1833637	1002.376699	62.19333534	1.42849601		
AP1	2941.56714	3004.565097	62.99795658	1.410251		
AP2	4941.710159	5003.664777	61.95461738	1.43400016		
AP3	6942.633474	7005.941476	63.30800204	1.40334442		
AP4	8942.920289	9005.097791	62.17750201	1.42885977		
AP5	10941.11235	11003.32786	62.21550201	1.42798705		
AP6	12942.82892	13003.88542	61.05650197	1.4550937		
AP7	14941.88548	15004.21412	62.32863837	1.42539503		
AP8	16942.6378	17005.99439	63.3565982	1.40226801		

2-6. Save image

You can save selected frame in image format. The supported image formats are PNG, BMP and JPEG. Right-click on each layer image and select "Export figure" from the displayed menu.

